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The observing system

FVGSI   16-Jan-2003 00UTC All data: 1,178,200 observations

(x 100,000)8.44.2

Upper-air virtual temperature

Data Types

Brightness temperature
Surface (2m) pressure

Surface (10m) wind speed
Upper-air specific humidity

Upper-air meridional wind
Upper-air zonal wind



4

Status of satellite data usage in operational NWP

• Satellite observations account for ~90% of all data assimilated in 
operational data assimilation/forecast systems

• These data account for << 1% of the available observations from lower 
Earth-orbiting systems

• The gap between the number of available and assimilated satellite 
observations is likely to widen significantly over the next decade

⇒ Intelligent strategies for data selection and usage must be developed

⇒ Flexible and efficient tools for ascertaining the “importance” of 
observations are required...
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Adjoint sensitivity analysis

)( af xx M=1. Consider a model:
and a (differentiable) scalar forecast measure: )( fxJJ =

3. The solution is:

j
j

i

j

i x
J

x

x

x
J

fa

f

a ∂
∂

∂

∂
=

∂
∂

∑

ixJ a/∂∂ such that:

ii
i

x
x
JJ a
a

′
∂
∂

= ∑δ )()( xxx JJJ −′+=Δapproximates

2. Determine

…Estimate the response of model output to possible perturbations of model input

or
f

T

a x
M

x ∂
∂

=
∂
∂ JJ

Sensitivity of J w.r.t the analysis Adjoint model (transpose of  M)



6

Example adjoint sensitivity calculation

FVGCM  24hr Forecast Error Sensitivity            00Z 15 Jan 2004

aθ∂
∂J (shaded) aθ basic state  (contour)

FVGCM adjoint model with simple physics
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Applications: predictability, system monitoring, parameter estimation, adaptive observing…
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Linear analysis problem:
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Sensitivity of the analysis to the observations:

where

Data assimilation adjoint theory  (Baker and Daley, 2000)

See also Le Dimet et al. 1995, Fourrie et al. 2002, Cardinali 2004(?)
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We have the sensitivity of the forecast measure to the analysis:

Now, relate the sensitivity of the forecast measure to the observations:
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Adjoint of Forecast and Assimilation ProcedureAdjoint of Forecast and Assimilation Procedure
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on reducing forecast error?
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Impact of observations on forecast error

The forecast error difference, ,  is due entirely to 
the assimilation of observations at 00UTC

30
243024 eee Δ=−

We seek an estimate of             in terms of sensitivity gradients in 
observation space…
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Langland and Baker (2004)
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Observation impact equation  (Langland and Baker, 2004)

1. Define the energy-weighted scalar error, e.g.:
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2. Express            in terms of gradients at verification time (exact!):30
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NAVDAS:  NRL Atmospheric Variational Data Assimilation System  
(3D, 1o lat-lon, 60 levels)

NOGAPS:  Navy Operational Global Atmospheric Prediction System  
(T79L30)

The analysis procedure:

The forecast model:

⇒ Adjoint excludes moist physics

⇒ Adjoint excludes moist observations, ozone

Results from Langland and Baker, 2004

Diagnosis of observation impact on short-range forecast errors in the 
Navy’s operational DAS/forecast system 
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Rawinsonde Profiles

Decrease           Increase

00UTC 10 Dec 2002

Total Impact = -2.05 J/kg

Langland and Baker, 2004

Observation impact on 3024 ee −



14

ATOVS Temperature Retrievals

Total Impact = -1.06 J/kg

Langland and Baker, 2004

Decrease           Increase

00UTC 10 Dec 2002

Observation impact on 3024 ee −
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Commercial Aircraft Observations

Total Impact = -0.36 J/kg

Langland and Baker, 2004

Decrease           Increase

00UTC 10 Dec 2002

Observation impact on 3024 ee −
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Large Impact of Observations in Cloudy Regions
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Fig. 4: Observation impact (average magnitude  per
observation, in J kg-1) as a function of model-diagnosed 
cloud-cover.  The “impact” in this figure includes both 
improvements and degradations of 72h global forecast 
error. Based on results from 29 June – 28 July 2002.
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Observation impact – cloud cover correlation

…large impact of observations in cloudy regions….both positive and negative...

Langland and Baker, 2004
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Observation impact – assimilation system tuning

N. Baker, NRL

Error Reduction (J kg-1)

Global Domain

48
42eδ
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December 2002

J kg -1

nonlinear model 
forecast differences

estimate using dry 
adjoint procedure

explains 75% of 

• moist observations?

• adjoint model physics?

• nonlinearity?

Remaining 25 %:

Accuracy of observation impact estimate
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Langland and Baker, 2004
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Nonlinear analysis problems: GSI
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…penalty for super saturation

…Consider the incremental variational problem solved  in the NCEP grid-point statistical 
interpolation (GSI) scheme

Development of adjoint GSI requires development of tangent linear algorithm as first step…
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GSI TLM

Δ GSI

Perturb: all u,v (O-F x 0.1)
Response: Tv (level 10)

Tangent linear behavior of the GSI algorithm

100 iterations
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Δ GSI

Perturb: all Rad (O-F x 0.1)
Response: v (level 20)

100 iterations

Tangent linear behavior of the GSI algorithm 

GSI TLM
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Tangent linear behavior of the GSI algorithm 

Ratio = 
rms (TLM)
rms (Δ GSI)

q-penalty OFF

Pert = all u,v (O-F x 0.01)

q-penalty ON
level=15,  outerloop=1
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Δ GSI

Perturb: all u,v (O-F x 0.01)
Response: u (level 15)

Tangent linear behavior of the GSI algorithm 

80 iterations

q-penalty ON

GSI TLM
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Δ GSI

Perturb: all u,v (O-F x 0.01)
Response: u (level 15)

Tangent linear behavior of the GSI algorithm 

80 iterations

q-penalty OFF

GSI TLM
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Effect of q-penalty on GSI increments

q-inc q-penalty ON Δq-inc (q-penalty ON – q-penalty OFF) 

Specific humidity,  00Z 19Jun2004,  level=10,  outerloop=1,  iteration=100
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Effect of q-penalty on GSI increments

Virtual Temperature,  00Z 19Jun2004,  level=10,  outerloop=1,  iteration=100

TV-inc q-penalty ON ΔTV-inc (q-penalty ON – q-penalty OFF) 



28

Status of GSI adjoint development 

• Tangent linear version of GSI (autumn release) has been developed and 
tested extensively for a range of perturbation types...major step toward 
generation of adjoint.

• Adjoint testing planned for early summer

• Tangent linear system is well behaved (representative of GSI) overall:
- good to excellent results for perturbed observations of u, v, T, q, radiance
- results improve, especially for q, when penalties for negative 
moisture/super saturation are removed or reduced
- response to ozone perturbations poor (highly nonlinear), but significance 
is unclear

• Update to March release of GSI underway:
- variational QC
- begin consolidation of nonlinear and tangent codes
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General conclusions…so far…

• Adjoint forms of a model and assimilation system allow efficient 
estimation of analysis and/or observation sensitivity (impact)

- determined with respect to observational data, background fields
or assimilation parameters, all computed simultaneously

• Sensitivity information should be useful for designing intelligent data 
selection strategies, and possibly guide future observing system design 

- permits arbitrary aggregation of sensitivities, e.g., by data type, 
channel, location, etc.
- information obtained should compensate pain of initial development 

• Provide unique insight into model/assimilation system behavior and 
design

• Complement, but not replace, traditional techniques for estimating 
observation impact (OSEs, OSSEs)
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1st order cience questions…

• Trade-offs between assimilating fewer observations with greater  
individual sensitivity, or more observations with less individual sensitivity

• How best to use observations in cloudy regions

• Whether/how sensitivity information can be utilized effectively for system 
tuning, e.g., observation error, bias estimation parameters,…

• Under what circumstances the required assumptions and simplifications 
render results unusable (simplified physics, linearity)

• Whether extremely nonlinear “switches” in forward systems are either 
necessary or appropriate 


